5.4 Indefinite Integrals and the Net Change Theorem/33: Revision history

Jump to navigation Jump to search

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

(newest | oldest) View ( | older 50) (20 | 50 | 100 | 250 | 500)

21 September 2022

3 September 2022

  • curprev 21:3721:37, 3 September 2022Kattieh70488@students.laalliance.org talk contribs 441 bytes +441 Created page with "<math> \begin{align} \int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}(\frac{\sqrt{5}}{\sqrt{x}})dx = 5^\frac{1}{2}\int_{1}^{4}x^\frac{-1}{2}dx\\[2ex] &= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex] &= 2\sqrt{5\times4}-2\sqrt{5\times1}\bigg|_{1}^{4} \\[2ex] &= 2\sqrt{20}-2\sqrt{5}\bigg|_{1}^{4} = 4\sqrt{5}-2\sqrt{5}\bigg|_{1}^{4} = 2\sqrt{5} \end{align} </math>"
(newest | oldest) View ( | older 50) (20 | 50 | 100 | 250 | 500)