5.4 Indefinite Integrals and the Net Change Theorem/1: Revision history

Jump to navigation Jump to search

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

26 August 2022

25 August 2022

23 August 2022

  • curprev 20:0220:02, 23 August 2022Dvaezazizi@laalliance.org talk contribs 396 bytes +396 Created page with "<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math> <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> let <math>a=x^2+1</math> and <math>b=a^{1/2}</math> then <math>\frac{da}{dx}=2x \text{ and } \frac{db}{da}=\frac{1}{2}a^{-1/2}</math> <math>\frac{da}{dx}\frac{db}{da} = 2x\frac{1}{2}a^{-1/2} = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>"