5.4 Indefinite Integrals and the Net Change Theorem/1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math> | <math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math><br> | ||
Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> | Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> |
Revision as of 17:16, 25 August 2022
Show that: