5.4 Indefinite Integrals and the Net Change Theorem/1: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Reverted
No edit summary
Tag: Manual revert
Line 9: Line 9:
\end{align}</math>
\end{align}</math>
<br><br>
<br><br>
<math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>


<math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>
<math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>

Revision as of 17:23, 25 August 2022


Show that: