5.3 The Fundamental Theorem of Calculus/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
&\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex]
&\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex]


&\cfrac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex]
&\frac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex]




\end{align}
\end{align}
</math>
</math>

Revision as of 19:24, 25 August 2022

Failed to parse (unknown function "\g"): {\displaystyle \begin{align} &\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex] &\frac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex] \end{align} }