5.3 The Fundamental Theorem of Calculus/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\begin{align}\int_{-1}^{2}(x^3-2x)dx &=\frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2} \\[2ex]&=\frac{(2)^4}{4}-\frac{2(2)^2}{2}-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\end{align}</math> | <math>\begin{align}\int_{-1}^{2}(x^3-2x)dx &=\frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2}\\[2ex]&=\frac{(2)^4}{4}-\frac{2(2)^2}{2}-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\\[2ex]&=0-\left[\frac{1}{4}-1\right]\end{align}</math> |
Revision as of 19:41, 25 August 2022