5.3 The Fundamental Theorem of Calculus/33: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> | <math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> | ||
<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[int_{2}^{1/x}\arctan(t)dt\right] | <math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | ||
<math>\frac{-1}{x^2}\left(\arctan(\frac{1}{x}\right)-0</math> | <\math>\frac{-1}{x^2}\left(\arctan(\frac{1}{x}\right)-0</math> |
Revision as of 19:51, 25 August 2022
Failed to parse (unknown function "\math"): {\displaystyle \frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] <\math>\frac{-1}{x^2}\left(\arctan(\frac{1}{x}\right)-0}