5.3 The Fundamental Theorem of Calculus/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2}\left(frac{t^4}{ | \int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) | ||
&= /frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2 | |||
&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex] | |||
&= 1+\frac{-1}{8} = \frac{7}{8} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:56, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) &= /frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2 &= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex] &= 1+\frac{-1}{8} = \frac{7}{8} \end{align} }