5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> | <math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> | ||
<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan(\frac{1}{x}))</math> | <math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\left\arctan(\frac{1}{x})\right)</math> |
Revision as of 19:59, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\left\arctan(\frac{1}{x})\right)}