5.3 The Fundamental Theorem of Calculus/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math>
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br>


<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)=\arctan(\frac{1}{x})</math>
<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)=\arctan(\frac{1}{x})</math> <br><br>


<math>\text{Therefore, } g'(x)=</math>
<math>\text{Therefore, } g'(x)=</math>

Revision as of 20:14, 25 August 2022