5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | ||
=\frac{-\arctan{\frac{1}{x}} | =\frac{-\arctan{\frac{1}{x}}</math> <br><br> | ||
<math>\text{Therefore, } g'(x)=</math> | <math>\text{Therefore, } g'(x)=</math> |
Revision as of 20:18, 25 August 2022
Failed to parse (syntax error): {\displaystyle \frac{d}{dx}\left[h(x)\right] =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) =\frac{-\arctan{\frac{1}{x}}}