5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | ||
</math> | |||
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | ||
Revision as of 20:18, 25 August 2022
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)
=\frac{-\arctan{\frac{1}{x}}</math>