5.3 The Fundamental Theorem of Calculus/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]


</math>
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)



Revision as of 20:18, 25 August 2022



=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)

=\frac{-\arctan{\frac{1}{x}}</math>