6.1 Angles and Their Measure/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


\frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi}
\frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi}
=\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}}\cdot\frac{\pi}{\cancel{2}\cdot {2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}
=\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}}
 
=\frac{90^{circ}}{6}  
= \frac{\pi}{6}
= {15^{circ}


</math>
</math>

Revision as of 22:03, 25 August 2022

Failed to parse (syntax error): {\displaystyle \frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi} =\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}} =\frac{90^{circ}}{6} = {15^{circ} }