6.1 Angles and Their Measure/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi} | \frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi} | ||
=\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}} | =\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}} | ||
=\frac{90^{circ}}{6} | |||
= | = {15^{circ} | ||
</math> | </math> |
Revision as of 22:03, 25 August 2022
Failed to parse (syntax error): {\displaystyle \frac{\pi}{12}=\frac{\pi}{2\cdot6}\cdot\frac{180^{\circ}}{\pi} =\frac {\cancel{\pi}}{\cancel{2} \cdot {6}} \cdot \frac{ \cancel{2}\cdot {2}\cdot {5} \cdot {3}\cdot {3}\cdot}{\cancel {\pi}} =\frac{90^{circ}}{6} = {15^{circ} }