6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | ||
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] | & \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] </math> |
Revision as of 03:38, 26 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1}=2\\[2ex] \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} & \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] }