5.4 Indefinite Integrals and the Net Change Theorem/1: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/1" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math>
<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math><br>


<math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math>
Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math>


<br>
<br>
<math>\begin{align}
<math>\begin{align}
a &= x^2+1 & b &= a^{1/2} \\[0.6ex]
a &= x^2+1 & b &= a^{1/2} \\[0.6ex]
\frac{da}{dx} &=2x y & \frac{db}{da} &=\frac{1}{2}a^{-1/2}   
\frac{da}{dx} &=2x & \frac{db}{da} &=\frac{1}{2}a^{-1/2}   
\end{align}</math>
\end{align}</math>
<br><br>
<br><br>


<math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>
<math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>

Latest revision as of 18:24, 26 August 2022


Show that: