5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | |||
\int\limits_{0}^{\pi}f(x)dx | \int\limits_{0}^{\pi}f(x)dx | ||
Line 16: | Line 17: | ||
&= -\cos(x)\\[2ex] | &= -\cos(x)\\[2ex] | ||
\end{align} | |||
</math> | </math> |
Revision as of 18:52, 26 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int\limits_{0}^{\pi}f(x)dx \quad \text{where} \; f(x) = \begin{cases} sin(x) & 0 \le x < \frac{\pi}{2} \\ cos(x) & \frac{\pi}{2} \le x \le \pi \end{cases} }
Failed to parse (syntax error): {\displaystyle = \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx \\[2ex] &= -\cos(x)\\[2ex] \end{align} }