5.3 The Fundamental Theorem of Calculus/41: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 6: Line 6:
f(x) =
f(x) =
   \begin{cases}
   \begin{cases}
     sin(x) & 0 \le x < \frac{\pi}{2} \\
     \sin(x) & 0 \le x < \frac{\pi}{2} \\
     cos(x) & \frac{\pi}{2} \le x \le \pi
     \cos(x) & \frac{\pi}{2} \le x \le \pi
   \end{cases}
   \end{cases}


</math>
</math>


<math> = \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx =
<math> = \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx = -\cos(x)




</math>
</math>

Revision as of 18:59, 26 August 2022