5.5 The Substitution Rule/2: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.5 The Substitution Rule/2" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(18 intermediate revisions by the same user not shown)
Line 4: Line 4:




<math>du = (4x^3)\,dx </math>
<math>
<math> \frac{du}{4} = x^3dx</math>
\begin{align}
 
u &=2+x^4 \\[2ex]
du &= 4x^3dx \\[2ex]
\frac{1}{4}du &= x^3dx
 
\end{align}
</math>




<math>
<math>
\int x^3(2+x^4)^5dx = \int
\begin{align}
\int x^3(2+x^4)^5dx &= \int (x^3dx)(2+x^4) = \int \left(\frac{1}{4}du\right)(u) = \frac{1}{4}\int u\,du \\[2ex]
 
&= \frac{1}{4} \left[\frac{u^{1+1}}{1+1}\right] + C = \frac{u^2}{8} + C \\[2ex]
 
&= \frac{(2+x^4)^2}{8} + C
 
\end{align}
</math>

Latest revision as of 19:00, 26 August 2022