5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
</math> | </math> | ||
<math> = \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx = -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = -\cos(\frac{\pi}{2}) | <math> = \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx = -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = -\cos(\frac{\pi}{2}) + \cos(0) | ||
</math> | </math> |
Revision as of 19:04, 26 August 2022