5.5 The Substitution Rule/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] | \int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] | ||
&= \int (du)\sin{(u)} = \int \sin{(u)}du | &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | ||
&= -\cos{(u)} + C | &= -\cos{(u)} + C |
Revision as of 19:06, 26 August 2022