5.3 The Fundamental Theorem of Calculus/33: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{1}^{2}\left(1+2y^2\right)dy</math>  
<math>\int_{1}^{2}\left(1+2y^2\right)dy</math>  
=<math>\int_{1}^{2}\left(4y^2+4y+1\right)dy</math>
=<math>\int_{1}^{2}\left(4y^2+4y+1\right)dy</math>
=<math>\frac{4y^3}{3}+\frac{4y^2}{2}\bigg|_{1}^{2}</math>
=<math>1y+\frac{4y^3}{3}+\frac{4y^2}{2}\bigg|_{1}^{2}</math>
=<math>2+\frac{32}{3}+\frac{16}{2}-\left(1+\frac{4}{3}+\frac{4}{2}\right)</math>
=<math>2+\frac{32}{3}+\frac{16}{2}-\left(1+\frac{4}{3}+\frac{4}{2}\right)</math>
=<math>\frac{49}{3}</math>
=<math>\frac{49}{3}</math>

Revision as of 19:06, 26 August 2022

= = = =