5.5 The Substitution Rule/30: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.5 The Substitution Rule/30" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(8 intermediate revisions by the same user not shown)
Line 16: Line 16:
<math>
<math>
\begin{align}
\begin{align}
\int x^3(2+x^4)^5dx &= \int (x^3dx)(2+x^4) = \int \left(\frac{1}{4}du\right)(u) = \frac{1}{4}\int u\,du \\[2ex]


&= \frac{1}{4} \left[\frac{u^{1+1}}{1+1}\right] + C = \frac{u^2}{8} + C \\[2ex]
\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex]


&= \frac{(2+x^4)^2}{8} + C  
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex]
&= -\cos{(u)} + C \\[2ex]
&= -\cos{(\ln{(x)})} + C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:10, 26 August 2022