6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(92 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\frac{8\pi}{3}\Rightarrow \left(-\frac{1}{2} ,\frac{\sqrt{3}}{2}\right)</math><br><br>
<math>
<math>
\begin{align}
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{\cancel2}} \cdot \cancel{2} = \frac{2}{\sqrt{3}} \cdot \sqrt{3} = \frac {2\sqrt{3}}{3}  \\[2ex]
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{1}{-\frac{1}{\cancel{2}}} \cdot \cancel{2} = -\frac{2}{1} = -2  \\[2ex]
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{\cancel 2}}{-\frac{{1}}{\cancel 2}} \cdot \cancel{2} = \frac{\sqrt{3}}{-1} = -\sqrt{3}


405^\circ [ex] </math>
& \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{\cancel 2}} {\frac{\sqrt{3}}{\cancel 2}} \cdot \cancel 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3}  \\[2ex] \end{align} </math>

Latest revision as of 09:45, 27 August 2022