5.5 The Substitution Rule/54: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 10: Line 10:
du &= 2xdx \\[2ex]
du &= 2xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]


\end{align}
\end{align}
</math>
</math>


New upper limit: <math>\pi = (\sqrt{\pi})^2</math><br>
New lower limit: <math>0 = (0)^2</math>


<math>
<math>
\begin{align}
\begin{align}


\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} =
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]
 
&= \int (\frac{1}{2}du)\cos{(u)} = \frac{1}{2}\int \cos{(u)}du \\[2ex]
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\sin{(u)} + C \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(x^2)} + C \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= 0


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:50, 28 August 2022



New upper limit:
New lower limit: