6.2 Trigonometric Functions: Unit Circle Approach/15: Difference between revisions
Jump to navigation
Jump to search
(Created page with ":<math> \begin{align} -\frac{2}{5},\frac\sqrt{21}{5} \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex] \cos{(t)} &= \frac\{x}{r} & \sec{(t)} &= \frac{r}{x}\\[2ex] \tan{(t)} &= \frac{y}{x} & \cot{(t)} &= \frac{x}{y} \\[2ex] \end{align} </math> \end{align} </math>") |
No edit summary |
||
Line 5: | Line 5: | ||
\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex] | \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex] | ||
\cos{(t)} &= \frac | \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] | ||
\tan{(t)} &= \frac{ | \tan{(t)} &= \frac\sqrt-{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] | ||
\end{align} | \end{align} |
Revision as of 18:53, 30 August 2022
\end{align}
</math>