6.2 Trigonometric Functions: Unit Circle Approach/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:




\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex]
\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac\5 sqrt{21}{21}\\[2ex]
\cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
\cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
\tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex]
\tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex]

Revision as of 19:13, 30 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} -\frac{2}{5},\frac\sqrt{21}{5} \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac\5 sqrt{21}{21}\\[2ex] \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] \tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] \end{align} }


\end{align} </math>