6.2 Trigonometric Functions: Unit Circle Approach/15: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{ | \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac\5 sqrt{21}{21}\\[2ex] | ||
\cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] | \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] | ||
\tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] | \tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] |
Revision as of 19:13, 30 August 2022
- Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} -\frac{2}{5},\frac\sqrt{21}{5} \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac\5 sqrt{21}{21}\\[2ex] \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] \tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] \end{align} }
\end{align}
</math>