5.4 Indefinite Integrals and the Net Change Theorem/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{0}^{2}(6x^{2}-4x+5) dx</math> = <math>\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}</math> = <math>\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}</math> = <math>2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}</math> | <math>\int_{0}^{2}(6x^{2}-4x+5) dx</math> = <math>\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}</math> = <math>\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}</math> = <math>2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}</math> = <math>2(2)^{3}-2(2)^{2}+{5(2)}-2(0)^{3}-2(0)^{2}+{5(0)}\bigg|_{0}^{2}</math> |
Revision as of 19:18, 30 August 2022
= = = =