5.4 Indefinite Integrals and the Net Change Theorem/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{0}^{2}(6x^{2}-4x+5) dx</math> = <math>\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}</math> | <math>\int_{0}^{2}(6x^{2}-4x+5) dx</math> = <math>\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}</math> | ||
= <math>\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}</math> = <math>2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}</math> | = <math>\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}</math> = <math>2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}</math> | ||
= <math>[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0) | = <math>[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]</math> = <math>16-18+0</math> | ||
= <math>18</math> | = <math>18</math> |
Revision as of 19:22, 30 August 2022
= = = = = =