5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=tan^{-1}\bigg|_{0}^{\frac{1}{\sqrt{3}}} | <math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=tan^{-1}\bigg|_{0}^{\frac{1}{\sqrt{3}}} | ||
\end{align}</math> | \end{align}</math> |
Revision as of 20:05, 1 September 2022