5.5 The Substitution Rule/63: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math>\int_{a}^{0}\{x}sqrt{x^2+a^2}dx</math>")
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\int_{a}^{0}\{x}sqrt{x^2+a^2}dx</math>
<math>\int_{0}^{a} x\,\cdot \sqrt{x^2+a^2}dx</math>
 
<math>
\begin{align}
 
u &=x^2+ a^2\\[2ex]
du &=2xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]
 
\end{align}
</math>
 
<math>
\begin{align}
 
\frac{1}{2}
\int_{a^2}^{2a^2}
\sqrt{u}\,\cdot du = \frac{1}{2}\,\cdot  \frac{a^{\frac{1}{2}+1}}{\frac{1}{2}+1}\bigg|_{a^2}^{2a^2}
 
\end{align}
</math>
 
<math>
\begin{align}
 
\frac{1}{2}\,\cdot \frac{2}{3}\,\cdot\ u^\frac{3}{2}\bigg|_{a^2}^{2a^2} = \frac{1}{3} \left(2a^{2}\right)^\frac{3}{2}- \frac{1}{3} \left(a^{2}\right)^\frac{3}{2}
 
 
\end{align}
</math>
 
<math>
\begin{align}
 
= \frac{1}{3}\,\cdot 2^\frac{3}{2}\,\cdot {a^3}-\frac{1}{3} {a^3}
=\frac{1}{3}\left(2^\frac{3}{2} -1 \right) {a^3}
 
\end{align}
</math>
 
<math>
\begin{align}
 
\frac{1}{3} \left(2\sqrt{2}-1\right) {a^3}
 
\end{align}
</math>

Latest revision as of 00:59, 2 September 2022