5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} \int_{0}^{\frac{\pi}{4}} \end{align} </math>") |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{\frac{\pi}{4}} | \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta \ = \ \int_{0}^{\frac{\pi}{4}}\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} \ = \ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2(\theta)} + 1 | ||
=\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}} | |||
=\tan({\frac{\pi}{4}}) + \frac{\pi}{4} - \left(\tan(\theta)+0\right) | |||
=1+\frac{\pi}{4} | |||
Revision as of 06:05, 3 September 2022