5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


  \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta \ = \ \int_{0}^{\frac{\pi}{4}}\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} \ =    \ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2(\theta)} + 1
  \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta \ = \ \int_{0}^{\frac{\pi}{4}}\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} \ =    \ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2(\theta)} + 1 \\


=\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}
=\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\
=\tan({\frac{\pi}{4}}) + \frac{\pi}{4} - \left(\tan(\theta)+0\right)
=\tan({\frac{\pi}{4}}) + \frac{\pi}{4} - \left(\tan(\theta)+0\right)\\
=1+\frac{\pi}{4}
=1+\frac{\pi}{4}



Revision as of 06:06, 3 September 2022