5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) | \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) | ||
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | ||
&= \left(\ln (\abs(u)) \right) | &= \left(\ln (\abs(u)) \right) | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 15:58, 6 September 2022
New upper limit:
New lower limit:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du &= \left(\ln (\abs(u)) \right) \end{align} }