5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Reverted |
No edit summary Tag: Manual revert |
||
Line 2: | Line 2: | ||
<math>\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1\cdot(e^{x^2-x})-0\cdot(e^{3^2-3})=e^{x^2-x}</math> <br><br> | <math>\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1\cdot(e^{x^2-x})-0\cdot(e^{3^2-3})=e^{x^2-x}</math> <br><br> | ||
<math>\text{Therefore, } g'(x)=e^{x^2-x}</math> | <math>\text{Therefore, } g'(x)=e^{x^2-x}</math> | ||
Revision as of 19:48, 6 September 2022