5.3 The Fundamental Theorem of Calculus/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> g(x)= \int_{x}^{\pi}\sqrt{1+sec(t)}\cdot dt </math> <br><br>
<math> g(x)= \int_{x}^{\pi}\sqrt{1+sec(t)}\cdot dt </math> <br><br>
<math> \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_\pi^{x}\sqrt{1+sec(t)}\cdot dt\right]=0 \cdot \sqrt{1+sec(\pi)} - 1\cdot \sqrt{1+sec(x)} = -\sqrt{1+sec(x)}</math> <br><br>
<math> \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_\x^{\pi}\sqrt{1+sec(t)}\cdot dt\right]=0 \cdot \sqrt{1+sec(\pi)} - 1\cdot \sqrt{1+sec(x)} = -\sqrt{1+sec(x)}</math> <br><br>
<math>\text{Therefore, } g'(x)=-\sqrt{1+sec(x)}</math>
<math>\text{Therefore, } g'(x)=-\sqrt{1+sec(x)}</math>

Revision as of 20:06, 6 September 2022



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_\x^{\pi}\sqrt{1+sec(t)}\cdot dt\right]=0 \cdot \sqrt{1+sec(\pi)} - 1\cdot \sqrt{1+sec(x)} = -\sqrt{1+sec(x)}}