5.3 The Fundamental Theorem of Calculus/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


<math>y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt</math>
<math>y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt</math>
FTC 1:
<math>\frac{d}{dx}\int_{a(x)}^{b(x)}f(t)\,dt=b^\prime{(x)}\cdot\,f(b(x))-\,a^\prime{(x)}\cdot\,f(a(x))</math>


<math>
<math>
\begin{align}
\begin{align}


\frac{d}{dx}= \int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt tan(x)})-0\cdot\sqrt{0+\sqrt 0}\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt tan(x)})
\frac{d}{dx}(y)= \int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt tan(x)})-0\cdot\sqrt{0+\sqrt 0}\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt tan(x)})


\end{align}
\end{align}

Revision as of 20:09, 6 September 2022

In this problem , so when it is multiplied by it will result in 0 and doesn't need to be added.