5.3 The Fundamental Theorem of Calculus/7: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/7" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>g(x)=\int_{1}^{x}\frac{1}{t^3+1}dt</math><br> | <math>g(x)=\int_{1}^{x}\frac{1}{t^3+1}dt</math><br><br> | ||
<math>\frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t^3+1}dt\right]= | <math>\frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t^3+1}dt\right]= | ||
(1)\left(\frac{1}{1+x^3}\ | (1)\left(\frac{1}{(x)^3+1}\right)-(0)\left(\frac{1}{(1)^3+1}\right)=\frac{1}{x^3+1}</math><Br> | ||
<br> | |||
<math>\text{Therefore, } g'(x)=\frac{1}{x^3+1}</math> |
Latest revision as of 20:14, 6 September 2022