5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/8" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> g(x)=\int_{3}^{x}e^{t^2-t}dt </math> <br><br> | ||
<math>\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1\cdot(e^{x^2-x})-0\cdot(e^{3^2-3})=e^{x^2-x}</math> <br><br> | |||
g(x)=\int_{3}^{x}e^{t^2-t}dt | <math>\text{Therefore, } g'(x)=e^{x^2-x}</math> | ||
</math> | |||
< | |||
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]= | |||
\text{Therefore, } g'(x)=e^{x^2-x | |||
Latest revision as of 20:14, 6 September 2022