5.3 The Fundamental Theorem of Calculus/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/10" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
<math> | <math> | ||
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] = | \frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] = | ||
1\cdot\sqrt{(r)^2+4} - 0\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4} | (1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4} | ||
</math> | |||
<math> | |||
\text{Therefore, } g'(r) =\sqrt{r^2 + 4} | |||
</math> | </math> |
Latest revision as of 20:15, 6 September 2022