5.3 The Fundamental Theorem of Calculus/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/10" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(3 intermediate revisions by the same user not shown)
Line 7: Line 7:
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
(1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4}
(1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4}
</math>
<math>
\text{Therefore, } g'(r) =\sqrt{r^2 + 4}
</math>
</math>

Latest revision as of 20:15, 6 September 2022