5.3 The Fundamental Theorem of Calculus/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/11" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> g(x)= \int_{x}^{\pi}\sqrt{1+sec(t)}\cdot dt </math> <br><br> | <math> g(x)= \int_{x}^{\pi}\sqrt{1+sec(t)}\cdot dt </math> <br><br> | ||
<math> \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\ | <math> \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_x^{\pi}\sqrt{1+sec(t)}\cdot dt\right]=0 \cdot \sqrt{1+sec(\pi)} - 1\cdot \sqrt{1+sec(x)} = -\sqrt{1+sec(x)}</math> <br><br> | ||
<math>\text{Therefore, } g'(x)=-\sqrt{1+sec(x)}</math> | <math>\text{Therefore, } g'(x)=-\sqrt{1+sec(x)}</math> |
Latest revision as of 20:15, 6 September 2022