5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/13" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> | <math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br> | ||
<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)=\arctan(\frac{1}{x} | <math>\frac{d}{dx}\left[h(x)\right] | ||
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | |||
=\frac{-1}{x^2}\cdot\left(\arctan\left(\frac{1}{x}\right)\right)-0\cdot(\arctan\left(2)\right) | |||
=\frac{-\arctan\frac{1}{x}}{x^2}</math> <br><br> | |||
<math>\text{Therefore, } h'(x)=\frac{-\arctan\frac{1}{x}}{x^2}</math> |
Latest revision as of 20:15, 6 September 2022