5.3 The Fundamental Theorem of Calculus/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/13" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br>
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br>


<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)=\frac{-arctan\frac{1}{x}}</math> <br><br>
<math>\frac{d}{dx}\left[h(x)\right]


<math>\text{Therefore, } g'(x)=</math>
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]
 
=\frac{-1}{x^2}\cdot\left(\arctan\left(\frac{1}{x}\right)\right)-0\cdot(\arctan\left(2)\right)
 
=\frac{-\arctan\frac{1}{x}}{x^2}</math> <br><br>
 
<math>\text{Therefore, } h'(x)=\frac{-\arctan\frac{1}{x}}{x^2}</math>

Latest revision as of 20:15, 6 September 2022