5.3 The Fundamental Theorem of Calculus/15: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/15" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt</math> | <math>y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt</math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\frac{d}{dx}(y)= \frac{d}{dx}\left[\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\] | \frac{d}{dx}(y)= \frac{d}{dx}\left[\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\right]=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}})-0\cdot\sqrt{0+\sqrt 0}\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
<math> | |||
\text{Therefore, } y' = \sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) | |||
</math> |
Latest revision as of 20:15, 6 September 2022