5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(79 intermediate revisions by 2 users not shown)
Line 1: Line 1:
FTC #1
<math>y=\int_{1-3x}^{1}\frac{u^3}{1+u^2} du</math>
<math>y=\int\limits_{1-3x}^{1}/(u^3)\(1+u)^2</math>
 
 
<math>
\frac{d}{dx}(y)=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{1+u^2}\,du\right) = (0)\cdot\frac{(1)^3}{1+(1)^2}
 
-(-3)\cdot\frac{(1-3x)^3}{1+(1-3x)^2}
 
</math>
 
 
<math>
\text{Therefore, } y' = \frac{3(1-3x)^3}{1+(1-3x)^2}
</math>

Latest revision as of 20:31, 6 September 2022