5.3 The Fundamental Theorem of Calculus/19: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\begin{align}\int_{-1}^{2}(x^3-2x)dx &= \frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2}\\[2ex]
\begin{align}\int_{-1}^{2}(x^3-2x)\,dx &= \frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2}\\[2ex]


&=\left[\frac{(2)^4}{4}-\frac{2(2)^2}{2}\right]-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\\[2ex]
&=\left[\frac{(2)^4}{4}-\frac{2(2)^2}{2}\right]-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\\[2ex]


&=[0]-\left[\frac{1}{4}-1\right]=0-\left[-\frac{3}{4}\right]=\frac{3}{4}
&=[0]-\left[\frac{1}{4}-1\right] \\[2ex]
 
&=\frac{3}{4}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 20:36, 6 September 2022