5.3 The Fundamental Theorem of Calculus/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align}\int_{-1}^{2}(x^3-2x)dx &= \frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2}\\[2ex] | \begin{align}\int_{-1}^{2}(x^3-2x)\,dx &= \frac{x^4}{4}-\frac{2x^2}{2}\Bigg|_{-1}^{2}\\[2ex] | ||
&=\left[\frac{(2)^4}{4}-\frac{2(2)^2}{2}\right]-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\\[2ex] | &=\left[\frac{(2)^4}{4}-\frac{2(2)^2}{2}\right]-\left[\frac{(-1)^4}{4}-\frac{2(-1)^2}{2}\right]\\[2ex] | ||
&=[0]-\left[\frac{1}{4}-1\right]=\frac{3}{4} | &=[0]-\left[\frac{1}{4}-1\right] \\[2ex] | ||
&=\frac{3}{4} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 20:36, 6 September 2022