5.3 The Fundamental Theorem of Calculus/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex]


&\int_{0}^{1}x^{\frac{4}{5}}dx \\[2ex]
&=\frac{5\cdot \sqrt[5]{1^9}}{9}-\frac{5 \sqrt[5]{0^9}}{9} \\[2ex]
 
 
&\cfrac{5\cdot \sqrt[5]{x^4}}{9}\bigg|_{0}^{1} \\[2ex]
 
&\cfrac{5\cdot \sqrt{1^4}}{9}-\cfrac{5 \sqrt[5]{0^4}}{9} \\[2ex]


&=\cfrac{5}{9}
&=\cfrac{5}{9}


\end{align}
\end{align}
</math>
</math>

Revision as of 20:49, 6 September 2022