5.3 The Fundamental Theorem of Calculus/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
&= \frac{3t^{-4}}{-3}\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\[2ex]
 
&= \frac{3t^{-4+1}}{-4+1}\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\[2ex]
 
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex]
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex]
&= 1-\frac{1}{8} = \frac{7}{8}
 
&= \left[-\frac{1}{8}\right]+[1] = \frac{7}{8}
 
\end{align}
\end{align}
</math>
</math>

Revision as of 21:00, 6 September 2022