5.3 The Fundamental Theorem of Calculus/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/25" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
&= \frac{3t^{-4}}{-3}\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex]
&= 1+\frac{-1}{8} = \frac{7}{8}
\end{align}
</math>


&= \frac{3t^{-4+1}}{-4+1}\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\[2ex]


\int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) \\
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex]


&= \frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2} \\
&= \left[-\frac{1}{8}\right]+[1] = \frac{7}{8}


&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex]
\end{align}
 
</math>
&= 1+\frac{-1}{8} = \frac{7}{8}

Latest revision as of 21:01, 6 September 2022